Abstract

A systematic geometric design methodology to generate a stable controller for simultaneous local and remote attenuation that was previously proposed is experimentally validated on a structure. The local control path transfer function for this experimental system is non-minimum phase due to which the original broadband controller design would yield an unstable controller. Here a modified procedure for systems with local non-minimum phase dynamics is used to generate a stable controller. According to this method, reduction in vibration at local and remote points on a structure can be parameterised in terms of the available design freedom and a controller is realised in terms of the optimal selection of this using the minimum phase counterpart of the local control path transfer function. The modified method results in a controller that is both stable and stabilizing and which achieves the desired vibration attenuation at the local and remote points on the structure. An experimental facility that replicates the vibration transmission through the shaft of a propeller blade rig system is used to demonstrate the method. Vibration for excitation near the first bending mode frequency of the resonating part of this structure is attenuated at the non-resonating part of the system without deteriorating vibration at the resonating end.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.