Abstract
Staphylococcus aureus is a leading cause of intramammary infections (IMI). We recently demonstrated that Staph. aureus strains express the gene guaA during bovine IMI. This gene codes for a guanosine monophosphate synthetase and its expression is regulated by a guanine riboswitch. The guanine analog 2,5,6-triaminopyrimidine-4-one (PC1) is a ligand of the guanine riboswitch. Interactions between PC1 and its target result in inhibition of guanosine monophosphate synthesis and subsequent death of the bacterium. The present study describes the investigational use of PC1 for therapy of Staph. aureus IMI in lactating cows. The in vitro minimal inhibitory concentration of PC1 ranged from 0.5 to 4μg/mL for a variety of Staph. aureus and Staphylococcus epidermidis strains and required a reducing agent for stability and full potency. A safety assessment study was performed, whereby the healthy quarters of 4 cows were infused with increasing doses of PC1 (0, 150, 250, and 500mg). Over the 44h following infusions, no obvious adverse effect was observed. Ten Holstein multiparous cows in mid lactation were then experimentally infused into 3 of the quarters with approximately 50 cfu of Staph. aureus strain SHY97-3906 and infection was allowed to progress for 2wk before starting PC1 treatment. Bacterial counts reached then about 103 to 104 cfu/mL of milk. Infected quarters were treated with 1 of 3 doses of PC1 (0, 250, or 500mg) after each morning and evening milking for 7d (i.e., 14 intramammary infusions of PC1). During the treatment period, milk from PC1-treated quarters showed a significant reduction in bacterial concentrations. However, this reduction of Staph. aureus count in milk was not maintained during the 4wk following the end of the treatment and only 15% of the PC1-treated quarters underwent bacteriological cure. The somatic cell count and the quarter milk production were not affected by treatments. Although bacterial clearance was not achieved following treatment with PC1, these results demonstrate that the Staph. aureus guanine riboswitch represents a relevant and promising drug target for a novel class of antibiotics for the animal food industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.