Abstract

This paper analyzes and presents the thermodynamic cycles and the experimental performance parameters of a solar adsorptive icemaker that uses activated-carbon methanol pair. The solar energy technology employed is far less sophisticated than that of collectors using selective surface or evacuated tubes. The collector-adsorber is multi-tubular with an opaque black radiation-absorbing surface, and thermal insulated by means of transparent covers, the so-called transparent insulation material (TIM). The solar radiation hits on both faces of the tubes by means of semi-cylindrical reflectors. It is shown the results of tests carried out in a region of Brazil close to the Equator, on days characterized by the predominant cloud cover degree. Three cycles have been analyzed: one with clear sky, another with partially cloudy sky, and a third under entirely cloudy sky. The maximum regenerating temperatures were 100.1, 87.3 and 92.7 °C, with an ice production of 6.05, 2.10 and 0 kg by square meter of projected area, for cycles of clear sky, partially cloudy and overcast nights, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.