Abstract

Transformers are considered as one of the main and high cost components of the power systems. This is due to the fact that their failure may have negative influence on sustainability and quality of energy. In addition, some failures may lead to high cost for replacement or repair and an unplanned outage of a power transformer is highly uneconomical. As a result, as a major equipment in power systems, its correct functioning is vital to enable efficient and reliable operation of electric power system. A transformer can fail due to any combination of electrical, mechanical or thermal stresses. The normal operation life of a transformer is partially related to the deterioration of its insulation through thermal ageing, which is determined mainly by its daily cyclic loadings. In this paper, heat analysis of a 1.5MVA Oil-Natural Air-Natural cooling mode distribution transformer is experimentally investigated by equipped fiber optic sensors. The density of the fiber optic sensors is increased at the active parts in critical spots. Temperature measurements are realized according to the transformer losses variation and load variation tests. The thermal behavior of the distribution transformer is obtained. Contrary to the existing studies, the obtained results show that also the structure and the design of the transformer affects the hot-spot position and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.