Abstract

Lattice materials are one of the most desirable and widely used materials due to the characteristics derived from their geometrical formation as opposed to their chemical composition. In this article, a lattice material has been designed and printed using polymer filament wire made of polylactic acid (PLA) and fused deposition modelling (FDM), followed by mechanical testing. In addition, tensile testing of the PLA printed samples has also been carried out to ascertain the tensile properties of the material in use, and the material has shown 38–40 MPa tensile strength with a Young’s modulus value of 1538 ± 120 MPa. The lattice was designed using 3D CAD software, and numerical results were obtained using the Autodesk Inventor simulation module. In addition to the experimental test, theoretical tests were also conducted, and the results were compared to the experimental results. With this methodology, the lattice material failure process can be comprehended. Along with the lattices, the PLA tensile test samples were also prepared and tested to check the feasibility of the PLA being used and ascertain the properties. In addition, it has been observed that after a specific load and deformation, the material’s resistance increases due to its increased density and repeated cell interference. The major purpose of the study is to explore the aspects and feasibility of the PLA printed lattice material with complex shapes and explore the application potential of such shapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.