Abstract

This paper investigates experimentally a tubular bonded butt specimen with relief grooves carved close to the adherend-adhesive interface. The specimen is used to assess the strength of a thin adhesive layer, as usually occurs in structural bonded joints. Hence, this configuration overcomes the problems related to the differences in chemical and mechanical properties which could occur in bulk adhesive tests. The aim is to verify experimentally the reduction of the stress concentrations at the interface given by the presence of the grooves, observed in a previous numerical work of the authors. Finite element analyses show that the groove geometry adopted here, although slightly simplified with respect to the optimum shape previously proposed, produces a strong reduction of the edge effects. This work performs an indirect assessment by comparing tensile strength of bonded specimens with and without relief grooves. A two-level factorial experimental campaign is performed, according to Design of Experiment criteria. The variables are: presence of the grooves, adherends material, and adhesive thickness. The response of the tests is the maximum tensile load carried by the specimen which is found to depend strongly on the adherends’ materials. In the case of steel joints, the relief grooves near the adherend-adhesive interface lead to higher loads regardless of the adhesive thickness. In the case of aluminium joints the relief grooves play a minor role, while tensile strength decreases as the adhesive thickness increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call