Abstract

The recent series of damaging earthquakes in Christchurch, New Zealand has encouraged greater recognition of the post-earthquake economic impacts on New Zealand society and higher emphasis on low-damage earthquake resisting systems. Braced frames incorporating Buckling Restrained Braces (BRB) are seen as a significant contender for such a system.
 This research project focuses on the development of a reliable design procedure and detailing requirements for a generic BRB system. To gauge the performance of the designed system and to ascertain the reliability of the developed procedure, a series of static and dynamic sub-assemblage tests on the BRB frame with two different brace connection configurations were performed. The results are presented and discussed herein.
 The experimental tests generated stable and near symmetrical hysteresis loops, which is a principal characteristic of a well performing BRB system, albeit with the occurrence of slack in the connections. The experimental test results shows that several improvements need to be made to the proposed design procedure and detailing as outlined throughout the paper; especially the procedural modification to prevent slack from occurring in the two different connection systems. It is envisaged that applications will typically involve use of proprietary braces, however these need to be applied in accordance with the New Zealand design procedure; and determining the appropriate procedure was a key part of this project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.