Abstract

AbstractComplex circular hollow section double KK‐joints are widely used in, e.g. offshore wind turbine jackets. As an alternative to conventional welded joints of the CHS multi‐membered structures, wrapped composite joints have shown superior structural performance in previous pilot tests. Experimentally characterizing the joint behaviour under uniplanar loading can be complicated, because of the ductile failure mechanisms of wrapped composite joints and second‐order bending moments. This paper presents the design of a test frame in combination with a conventional tensile 2.5 MN test rig. Ductile joint failure, joint imperfections and second‐order effects are considered in the design. Structural finite element software SOFiSTiK is used to analyse the effects of wrapped joint behaviour and imperfections on the test system and interaction of joint, frame and loading rig behaviours. Non‐linear joint behaviour and misalignments of the braces increased the second‐order effects significantly. Mitigation strategies have been explored to reduce additional bending moments in the KK‐joint. A complete test setup is proposed to perform static experiments on double KK‐joints in uniplanar axial loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.