Abstract

Macroscopic devices that probe and control elementary quantum systems are subjected to environment-induced decoherence and typically consist of a large number of particles that cannot be precisely controlled and individually accessed. These two factors limit the control of quantum systems by an open macroscopic device. Here, we investigate a faithful and robust implementation of specific elementary quantum operations under such conditions. We propose a procedure for quantum restoration of a single qubit that is resilient to particle loss and decoherence of the macroscopic device and compare it with a similarly robust procedure for indirect quantum detection of the qubit state by measurement on the macroscopic device. Complementary to detection, the restoration recovers the original state of the system qubit by quantum erasing which decouples the system from the device. Perfect restoration is possible even if the particles of the device are only classically correlated. We experimentally witness the robustness of quantum detection and restoration for a two-qubit device represented by the quantum state of photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call