Abstract

Bell's theorem states that no local hidden variable model is compatible with quantum mechanics. Surprisingly, even if we release the locality constraint, certain nonlocal hidden variable models, such as the one proposed by Leggett, may still be at variance with the predictions of quantum physics. Here, we report an experimental test of Leggett's nonlocal model with solid-state spins in a diamond nitrogen-vacancy center. We entangle an electron spin with a surrounding weakly coupled $^{13}C$ nuclear spin and observe that the entangled states violate Leggett-type inequalities by more than four and seven standard deviations for six and eight measurement settings, respectively. Our experimental results are in full agreement with quantum predictions and violate Leggett's nonlocal hidden variable inequality with a high level of confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.