Abstract

An analysis of the sectorial structure of energy consumption shows that residential and tertiary sector buildings are the third-highest consumers, responsible for 29.5% of a city’s final energy consumption. The Building Quality Control Laboratory of the Basque Government aims to promote quality, innovation, and sustainability in buildings. To accomplish this goal, it has constructed an experimental facility with different energy generation technologies and a very versatile control system for testing different energy systems and operation modes. In this study, we tested a facility for supplying domestic hot water and heating for a multi-family house by means of a condensing boiler and an aerothermal heat pump (together with the corresponding control). This installation could reproduce the thermal demands required to be satisfied by the generation equipment through a programmed operation of the installation based on real demands. Additionally, this installation was analyzed using thermoeconomics (TE) to solve problems unable to be solved using traditional energy analyses based on the First Law of Thermodynamics. These problems include: (1) Determining the costs of the products of the installation based on physical criteria, (2) detecting the places where losses actually occur, evaluating their costs, and proposing cost-effective improvements, and (3) diagnosing issues in the installation. As a result, this paper suggests a solution to the preventive maintenance problems confronting the technical maintenance personnel for thermal installations in buildings by applying TE knowledge and using real data collected from sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call