Abstract

Four types of the multi composite membranes were fabricated to decrease the sulfur content in diesel fuel, which the investigated polymers are polydimethylsiloxane (PDMS), polyethyleneglycol (PEG), polyethersulfonic (PES) and cross-linked polyacrylonitrile (PAN) with tetra-ethyl-ortho-silicate (TEOS). The effects of the operating parameters such as the cross-linking temperature (65–85 °C) and cross-linking time (0.5–2.5 h) were studied on the membranes performances. The results showed that the sulfur selectivity of PDMS/PEG/PES/PAN membranes were improved through increasing temperature and time. In addition, most of the total flux and the lowest amount of sulfur in the back flow is related to composite membranes of PEG + PDMS.

Highlights

  • The used membrane materials for removing sulfur are mostly including hydrophobic membranes such as polyurethane, polyurea/polyurethane, polyamide, natural rubber, polystyrene–butadiene and polydimethylsiloxane

  • The results showed that the thermal stability of these novel nanocomposite membranes was much better than that of the neat membrane thermodynamically, dipole–dipole interaction between the functional groups is the main parameter leading to better dispersion and thermal stability [11]

  • According to results it can be seen that most of the total flux is related to composite membranes of PEG + PDMS (0.7732 L/h)

Read more

Summary

Introduction

The used membrane materials for removing sulfur are mostly including hydrophobic membranes such as polyurethane, polyurea/polyurethane, polyamide, natural rubber, polystyrene–butadiene and polydimethylsiloxane. Hydrophilic properties of the membranes clearly increase the selectivity to the sulfur compounds which usually are more polar than hydrocarbons. The most common methods for making membranes with high selectivity and flux include cross-linking, blending, filling and copolymerization. Lin et al studied the solubility of gasoline blending in polyethylene glycol [1]. They concluded that sulfur recovery rate by increasing the amount of cross-linking agent and the cross-linking time increases. Lin et al used polyethylene glycol and polyurethane polymers for fluidized bed catalytic cracking unit gasoline desulfurization [2]. Wu et al improved the stability of the interface between the active

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.