Abstract
We present an experimental identification of the local and mean Nusselt number from a rotating TGV brake disk mode! in the actual environment and exposed to an air flow parallel to the disk surface. This method is based on the use of a heated thermally thick disk combined with the technique of temperature measurement by infrared thermography. The local and mean convective heat transfer coefficient from the disk surface is identified by solving the steady state heat equation by a finite difference method using the experimental temperature distribution as boundary conditions. The experimental setup is constituted of a model disk with all the representative parts of the actual TGV brake system. The disk and its actual environment are inside a wind tunnel test section, so that the rotational disk speed and the air flow velocity can be varied. Tests were carried out for rotational speeds ω between 325 and 2000 rpm (rotational Reynolds number Re between 88,500 and 545,000), and for an air flow velocity U ranging between 0 and 12 m.s - 1 (air flow Reynolds number Re 0 between 0 and 153,000).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.