Abstract

Based on similarity theory, this research details a thermal-state model experiment, concerning the evolution of the air/water temperature profiles inside a Natural Draft Wet Cooling Tower (NDWCT) under windless and crosswind conditions. Prior studies have shown that the air/water temperature distribution is fairly uniform and stable under windless (stagnant) conditions, but the uniformity is destroyed in the presence of windy conditions, and the air/water temperature of different points displays a large variation subject to the same crosswind velocity. Generally speaking, the highest air/water temperature values inside the whole tower lie on the windward and leeward direction, but the highest air temperature at the tower outlet appears near the leeward side zone, rather than exactly on the leeward side. Based on this research, the air/water temperature profiles regarding measurement of values can be obtained accurately under windless and crosswind conditions, a fact that can help confirm the specific location of vortex on the windward and leeward side. All of above findings can provide an important theoretical foundation concerning further research, specifically for energy-saving aspects NDWCTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.