Abstract
The conditions for mineral alteration and formation damage during CO 2 treatment of Tensleep sandstone reservoirs in northern Wyoming, USA, were examined through core-flooding laboratory experiments carried out under simulated reservoir conditions (80°C and 166 bars). Subsurface cores from the Tensleep sandstone, which were cemented by dolomite and anhydrite, and synthetic brines were used. The brines used were (Ca, Mg, Na)SO 4–NaCl solution (9.69 g/l total dissolved solids) for Run 1 and a 0.25 mol/l NaCl solution for Run 2. The solution used in Run 1 was saturated with respect to anhydrite at run conditions, which is characteristic of Tensleep Formation waters. Three major reactions took place during flooding, including (1) dissolution of dolomite, (2) alteration of K-feldspar to form kaolinite, and (3) precipitation (in Run 1) or dissolution (in Run 2) of anhydrite. All sample solutions remained undersaturated with respect to carbonates. The permeability of all the cores (except one used in Run 2) decreased during the experiments despite the dissolution of authigenic cement. Kaolinite crystal growth occurring in pore throats likely reduced the permeability. Application of the experimental results to reservoirs in the Tensleep Formation indicates that an injection solution will obtain saturation with respect to dolomite (and anhydrite) in the immediate vicinity of the injection well. The injection of NaCl-type water, which can be obtained from other formations, causes a greater increase in porosity than the injection of Tensleep Formation waters because of the dissolution of both dolomite and anhydrite cements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.