Abstract

Many achievements have been made in experimental studies of hydrocarbon migration in the clastic reservoir. On the other hand, few migration experiments have been reported in the carbonate reservoir simulation realm. This article is a tentative experimental study on hydrocarbon migration and accumulation in the carbonate reservoir, which is a complex media that includes a pore system and fracture system. This microcosmic experiment simulates oil-water displacement using a real core model. Plentiful seepage phenomena were observed in the microcosmic experiments. Three kinds of pathways were found in the plane: parallel pathway, oblique-cross pathway and network pathway. Three types of flow were found: continuous flow, sectioning flow and their combination. Three driving fronts were found in the experiment: piston front, encircle front and impulse front. All these vary with many factors such as fluid pressure, oil saturation, fissure configuration and wettability, and these factors affect each other. The results show that the relation between the fluid pressure and volume of flow is a complex segmenting correlation, instead of a simple positive correlation like the pipe flow that follows Darcy’s law. The relation between fluid pressure and the speed of flow also follows the same correlation. Speed of flow relates to the angle and width of the fissure. Speed of flow in the wide fissure that has an acute angle with the pressure gradient is faster than that in a narrow fissure with a high angle with the pressure gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call