Abstract

It is one of important design issues in the high-temperature superconducting fault current limiter (HTS-FCL) to estimate how much liquid nitrogen vaporizes during its quench process. This paper describes the small scale experiment about the vaporization of subcooled liquid nitrogen by instantaneous heat generation corresponding to the quench in HTS-FCL. In the experiment, the heat is given liquid nitrogen by Joule heating of the stainless steel strip for the short time of about 100 ms. The time variations of temperature and pressure in the liquid nitrogen test chamber are measured for different subcooling conditions of liquid nitrogen and various heat flux conditions. In addition, the amount of vaporization of liquid nitrogen is calculated from experimental results according to the subcooling of liquid nitrogen. The experimental results show that the vaporization of liquid nitrogen strongly depends on heat flux and subcooling conditions. The amount of vaporization linearly decreases with the increase in the subcooling of liquid nitrogen. The calculation results about the amount of vaporization suggest that the subcooling of more than 20 K is necessary to suppress bubble generation for the heat flux condition of 46 W/cm 2 or more.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call