Abstract

Explosion accidents have become the main threat for the high-efficiency use of cleaner gas energy sources, such as natural gas. During an explosion, obstacle causing flame acceleration is the main reason for the increase of the explosion overpressure, which still remains to be fully understood. In this research, field experiments were conducted in a 1 m3 cubic frame apparatus to investigate the effect of built-in obstacles on unconfined methane explosion. Cage-like obstacles were constructed using square steel rods with different cross section size. The results demonstrated that the flame could get accelerated due to the hydrodynamic instability and obstacle-induced turbulence, which enhanced the explosion overpressure. In the near field, the overpressure wave travelled slower and the maximum overpressure could almost keep constant. Reducing the cross section size, or increasing the obstacle height or the obstacle number per layer could determine the rise of the maximum overpressure, the maximum pressure rising rate and the overpressure impulse. For uniformly constructed obstacles, self-similar theory was chosen to measure the influence of the hydrodynamic instability, and a parameter β was adopted to measure the flame acceleration caused by obstacle-induced turbulence, the value of which was 2 in this research. Based on the acoustic theory, an overpressure prediction model was proposed and the predicted results agreed with the measured values better than previous models, such as TNT equivalency model and TNO multi-energy model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call