Abstract

This paper presents experimental results of the ultimate behavior of the negative moment region of a quarter-scale full model and a half-scale subassemblage model of a two-span continuous composite bridge of concrete deck slab on steel girder. The two specimens are based on a prototype bridge that has a large girder spacing [3,800 mm (13 ft)]. At the ultimate state, it is shown that a larger portion of the deck is activated to resist tensile stress compared with the effective width specified in the AASHTO load and resistance factor design bridge specifications. Also, a plastic hinge that forms at the internal support has enough rotational capacity (ductility) to enable development of a second plastic hinge within the span. Experimental results show a reasonably good match with accompanying finite element method analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call