Abstract

In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, a hot leg U-bend simulation loop has been built based on the two-phase flow scaling criteria developed under this program. The nitrogen-water system has been used to isolate the key hydrodynamic phenomena from heat transfer problems. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of various parameters such as the loop frictional resistance, thermal center, U-bend curvature, and inlet geometry. It was found that the permanent termination of the natural circulation was related to the head balance between the hot and cold legs. The local flow condition at the inverted U-bend could produce intermittent flow, however was not related to the permanent flow termination. The void distribution in a hot leg, flow regime, and natural circulation rate have been measured in detail for various conditions. Significant effects of the inlet geometry on these were observed. Near the flow termination condition, large amplitude flow oscillations occurred. The occurrence of this type of flow instability is important for safety analyses, because it may lead to loop-to-loop oscillations or flow excursions in a prototype system which has a multi-loop configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.