Abstract

Edge flames have become a subject of interest as basic structures for lifted-flame stabilization and turbulent flame propagation. Recently, with the development of small diffusion flame devices as energy sources for various small mechanical systems, edge flames within narrow spaces have also been investigated. In this study, the structures and propagation characteristics of a tribrachial flame (or an edge flame) in a confined narrow channel, with very small fuel concentration gradients, were experimentally investigated. Tribrachial flames could be successfully stabilized in the narrow channels. The flame shapes and propagation velocities were compared by changing the four experimental parameters of the mean velocity, fuel concentration gradient, channel gap, and fuel dilution ratio. It was experimentally observed that the luminosity of the diffusion branch diminished when the channel gap decreased. It was also found that there is a critical condition in the channel gap for maximum propagation velocity. A flow redirection effect and a heat loss effect are thought to have played a key role in the variation of the PVTF in a narrow channel, and their competition with each other caused a peak value of the PVTF at the critical channel gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.