Abstract

A comprehensive investigation on diesel pilot spray ignited methane-hydrogen (CH4–H2) combustion, tri-fuel combustion (TF), is performed in a single-cylinder compression ignition (CI) engine. The experiments provide a detailed analysis of the effect of H2 concentration (based on mole fraction, MH2) and charge-air temperature (Tair) on the ignition behavior, combustion stability, cycle-to-cycle (CCV) and engine performance. The results indicate that adding H2 from 0 to 60% shortens the ignition delay time (IDT) and combustion duration (based on CA90) up to 33% and 45%, respectively. Thereby, H2 helps to increase the indicated thermal efficiency (ITE) by as much as 10%. Furthermore, to gain an insight into the combustion stability and CCV, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) methodologies are applied to estimate the combustion stability and CCV of the TF combustion process. The results reveal that the pressure oscillation can be reduced up to 4 dB/Hz and the CCV by 50% when MH2 < 60% and Tair < 55 °C. However, when MH2 > 60% and Tair > 40 °C, abnormal combustion and knocking are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.