Abstract

This article presents an experimental study on the gear rattle noise phenomenon of automotive transmissions. A single-stage gear transmission has been designed and applied to a gear rattle noise test bench. The gear transmission allows the variation of several parameters affecting the rattle noise level, e.g. tooth backlash variation. High resolution incremental encoders on the transmission input and output shaft, as well as on the idler gear, enable the acquisition of the angular relative motion of the gear pair within the range of tooth backlash. The angular relative motion evaluates the sequence of meshing gear teeth along the path of contact under rattling conditions.The analysis of the angular relative motion indicates that gear tooth impacts during rattling lead to elastic deformation of meshing gear pairs. High contact forces during impacts cause Hertzian flattening of gear tooth flanks and rising fluid viscosity with pressure in the contact zone (elastohydrodynamic lubrication regime). The elastic deformation of meshing gear pairs lead to deviations from the angular velocity ratio between two gears of a gear pair and thus from the Law of Gearing. The main source for the gear rattle noise level is the additional presence of meshing impacts at the beginning of each gear pair meshing. Gear rattle noise reduction can be achieved by avoiding meshing impacts, e.g. by using low traction gear lubricants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.