Abstract

Waveform deformation and breaking are widespread phenomena when internal solitary waves (ISWs) encounter changing topographies, which have been observed in many parts of oceans. In this study, experiments are performed in a series of combinations of bottom step topographies with different heights and ISWs in different amplitudes within a two-layer stratified fluid system. According to experimental results, the evolution processes of ISWs over the bottom step are classified into four typical regimes as the wave–step interaction varying from weak to strong, which are the transmission regime, transitional regime, breaking regime, and reflection regime, corresponding to the evolution patterns of steady passage, deformation, breaking, and strong reflection, respectively. To describe the intensity of wave–step interaction, a new improved interaction parameter is proposed, which takes both relative amplitude of ISWs and relative topography changes into consideration, and achieved better effectiveness in defining the boundaries between different regimes. In terms of energy properties, with the wave–step interaction becoming stronger, the transmission ratio keeps decreasing throughout all regimes, while the reflection wave starts to appear since the breaking regime and its energy keeps increasing. At the critical point between the breaking regime and reflection regime, the reflection ratio equals the transmission ratio, and the energy loss ratio reaches its maximum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call