Abstract

Vibrations impose negative impacts on the effectiveness and public acceptance of helicopters. Active rotors with trailing-edge flaps have been proved to be an effective way to actively eliminate helicopter vibrations. For the existing control algorithm based on offline system identification, the transfer functions of an active rotor under different flight conditions are pre-requisites to implement closed-loop vibration control. In this study, a three-bladed active rotor with improved trailing-edge flaps is designed, and wind-tunnel tests are conducted to identify the transfer functions of this active rotor using frequency sweep and phase sweep methods. The experimental results demonstrate that these transfer functions are insensitive to the variation of flight speeds: the amplitude of the transfer function varies slightly, while the phase delay almost remains unchanged. In addition, this finding is validated through closed-loop vibration control tests with the active rotor. The transfer function obtained from the hover test results is also applicable to closed-loop vibration control tests under the forward flight conditions. This will dramatically simplify the implementation and operation of an active rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.