Abstract
High-speed underwater vehicles are subjected to complex multiphase turbulent processes, such as the growth, development, shedding, and collapse of cavitation bubbles. To study the cavity evolution and pressure pulsation characteristics, in this paper, cloud cavitation over a conical axisymmetric test body with four pressure sensors is investigated. A multi-field simultaneous measurement experiment method for the natural cavitation of underwater vehicles is proposed to understand the relationship between cavity evolution and instantaneous pressure. The results show that the evolution of cloud cavitation can be mainly divided into three stages: (I) the growth process of the attached cavity, (II) the shedding process of the attached cavity, and (III) the collapse of detached cavities. The evolution of the attached cavity and collapse of the large-scale shedding cavity will cause strong pressure pulsations. It is found that the cavitation number plays an important role in cavitation evolution and pressure pulsation. Interestingly, as the cavitation number decreases, the fluctuation intensity of cavitation increases significantly and gradually presents obvious periodicity. Moreover, the unstable cavitating flow patterns are highly correlated with the time domain and frequency domain characteristics of pressure. Especially, as the cavitation number decreases, the main frequency becomes lower and the pressure band becomes more concentrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.