Abstract

The transition process of the thermocapillary convection from a steady and axisymmetric mode to the oscillatory mode in a liquid bridge with a fixed aspect ratio and varied volume ratio was studied experimentally. To ensure the surface tension to play an important role in the ground-based experiment, the geometrical configuration of the liquid bridge was so designed that the associated dynamic Bond number Bd ≈ 1. The velocity fields were measured by Particle Image Velocimetry (PIV) technique to effectively distinguish the different flow modes during the transition period in the experiments. Our experiments showed that as the temperature difference increased the slender and fat bridges presented quite different features on the evolution in their flow feature: for the former the thermocapillary convection transformed from a steady and axisymmetric pattern directly into an oscillatory one; but for the latter a transition flow status, characterized by an axial asymmetric steady convection, appeared before reaching the oscillatory mode. Experimental observations agree with the results of numerical simulations and it is obvious that the volume of liquid bridge is a sensitive geometric parameter. In addition, at the initial stage of the oscillation, for the former a rotating oscillatory convection with azimuthal wave number m = 1 was observed while for the latter a pulsating oscillatory pattern with azimuthal wave number m = 2 emerged, and then with further increase of the temperature difference, the pulsating oscillatory convection with azimuthal wave number m = 2 evolved into a rotating oscillatory pattern with azimuthal wave number m = 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call