Abstract

The high temperature and high pressure gas produced by propellant deburning has strong thermal effect,which will produce strong thermal damage effect on the target. In this study, an improved closed explosive device was used to simulate the thermal shock loading of 5/7 single base propellant with a charge mass of 17.4 g, and the change law of heat flow density of propellant in the process of deflagration in a closed environment was tested. The experimental results show that the temperature rises rapidly during the deflagration of the 5/7 single-base propellant, and the maximum heat flow density can reach 17.68 MW/ m2 . The curves obtained from the three tests have good consistency in the change trend, which proves the engineering practicability of the improved closed explosive device in the study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.