Abstract

With the increasing deployment of large-scale lithium ion batteries (LIBs), thermal runaway (TR) and fire behavior are significant potential risks, especially for high energy density cells. A series of thermal abuse tests and hazard analysis on 117 Ah LiNi0.8Co0.1Mn0.1O2/graphite LIBs were performed under two conditions, “open space” and “confined space”. In open space tests, the fire behavior of LIBs was characterized with respect to the TR process, temperature characteristics, mass variation, voltage, heat release rate and gas release. To simulate the application scenarios in electric vehicles, a confined cabinet was introduced. The effects of state of charge and confined cabinet on the fire behavior of individual cell were analyzed. Furthermore, a real-scale scenario was considered for the evaluation of fire-induced toxicity using Fractional Effective Dose (FED) and Fractional Effective Concentration (FEC) models. The obtained results show that the effects of asphyxiant gases are more significant than those of irritant gases. The maximum FEC and FED values are greater than the critical threshold of 1, indicating the catastrophic toxicity in such fire scenarios. The minimum fresh air renewal rate required is computed to provide quantitative guides for ventilation management, firefighting and rescue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call