Abstract

Abstract Severe formation damage is induced by the invasion of working fluid and the subsequent water blocking. Surface modification by surfactant adsorption can change the wettability of the rock surface to enhance the removal efficiency of reservoir fluid and reduce the water blockage damage. Therefore, surfactant shows a good potential applicant in condense reservoir. In the current paper, an oligomeric silicone surfactant (OSSF) containing sulfonic acid groups is synthesized to improve the water flowback effect. The critical micelle concentration (CMC) is determined by equilibrium surface tension. Micelle can be formed above the CMC and its size and distribution increase with the concentration. At the same time, the surface tension increases with the aging temperature but decreases with the adding of inorganic salt. The OSSF adsorption through solid-liquid surface can change the surface chemical composition and transfer the wettability of reservoir from water-wet to gas-wet by decreasing the surface energy. Increasing temperature leads to the change in the adsorption isotherm from Langmuir type (L-type) to "double plateau" type (LS- type). Quantum chemistry study shows that the adsorbed layer of OSSF can reduce the adhesive force of CH4 and H2O on the pore surface of cores. The OSSF can also decease the initial foaming volume and stability in induction period and accelerating period of sodium dodecyl benzene sulfonate (SDBS). It is found that the surface tension of OSSF increases with aging temperature but decreases with the adding of inorganic salts.The OSSF has positive effect on wettability reversal to water-wet reservoir by adsorption on solid-liquid interface. The results indicate OSSF adsorption layer can change surface chemical composition and exhibit lower interface energy than that of the cores. The presence of NaCl can decrease foaming volume and improve foam stability of OSSF. At the same time, OSSF can decease the initial foaming volume and stability in induction period and accelerating period of sodium dodecyl benzene sulfonate (SDBS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call