Abstract

For understanding the mechanical performance and strain energy evolution mechanism of thick hard roof sandstone samples, a sequence of uniaxial compression trials with acoustic emission (AE) monitoring were carried out. The results indicate: (1) The stress-strain curve of the thick hard roof sandstone specimens exhibits distinct stage characteristics. Based on the evolvement of instantaneous axial stiffness, it is separated into Fracture Closure Phase, Elastic Deformation Phase, Steady Fracture Expansion Phase, Unsteady Fracture Expansion Phase, and Post-Peak Phase. (2) The AE energy and cumulative count curves of the thick hard roof sandstone specimens also exhibit significant stage characteristics and can be mutually corroborated with the stage division of the stress-strain curve. (3) Based on the energy conservation principle, the evolution of strain energy density in the thick hard roof sandstone specimens under uniaxial compression loading was analyzed, and plastic strain energy increment was employed to study the stage characteristics of strain energy dissipation. (4) A damage constitutive model for the thick hard roof sandstone specimens was constructed, considering the characteristics of strain energy dissipation. This model effectively describes the stress-strain relationship among the samples, which undergo strain hardening, strain softening, and sudden destruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.