Abstract
Pressurized O2/H2O combustion is a potential CCS technology. In this study, a pressurized horizontal furnace was used to prepare pyrolysis char under pressurized inert atmosphere, and then a pressurized drop tube furnace was used to carry out char combustion under pressurized O2/H2O atmosphere (5% O2, 20% H2O) at the same pressure and temperature as the pyrolysis process. The carbon conversion of char under different pressures (0.4/0.7/1.0 MPa), temperatures (900/950/1000 °C), and residence time (1.38/2.76/4.14 s) was studied by proximate analysis. The random pore model was used to calculate reaction kinetic parameters of char combustion at different pressures. The results show that when the pressure increased from 0.4 MPa to 0.7 MPa, the carbon conversion increased significantly, with the increment reaching up to 9.90 percentage points. The marginal diminishing effect became significant when the pressure was greater than 0.7 MPa. The reaction activation energy and pre-exponential factor at 0.4/0.7/1.0 MPa were 66.53/66.29/35.79 kJ/mol and 20.54/36.84/1.69 s−1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.