Abstract

Scholars have studied the impact of rubber particles (RPs) on the performance of the concrete and the research topics have covered all the mechanical properties and durability of normal concrete (NC). Recently, scholars have turned their research interest to the structural properties of concrete. However, there are few experimental studies on the bonding properties of RC to NC. The RPs have both positive and negative impacts on the bond performance. On one hand, RPs can reduce the shrinkage of concrete, resulting in reduced shear stress and tensile stress near the bonding boundary. On the other hand, RPs cause a reduction in the overall strength of concrete, resulting in the poor mechanical performance of the interface transition layer between the two concrete. The test results of this study show that the bonding splitting tensile strength between freshly mixed RC to aged NC first increases and then decreases with the rise of the RPs content in the RC, and the bonding splitting tensile strength reaches the peak when the RPs content is 10%. The bonding splitting tensile strength between the NC and the RC mixed with 3–5 mm RP is higher than that between the NC and the RC mixed with 1–3 mm RPs. When mixed with modified RPs, the bonding splitting tensile strength between the RC and the NC is improved. Applying an interfacial agent (a cement slurry or an epoxy) on the old concrete bonding surface can significantly improve the bonding splitting tensile strength. The results of non-repeated two-way ANOVA show that the content of the RPs and the type of the interfacial agent have significant effects on the bond splitting tensile strength, while the size and modification of the RPs have no significant effects on the bond splitting tensile strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.