Abstract
Premixed flame of stoichiometric syngas-air mixture with various hydrogen volume fractions, 10% ≤ X (H2) ≤ 90%, propagating in a duct with both ends open is experimentally investigated in this study. Two representative ignition locations, i.e., Ig-1, locating at the center of the duct, and Ig-2, locating at the right open end, are considered. Results show that the tulip flame is first attained in the duct with both ends open at 10% ≤ X (H2) ≤ 50% as the flame is ignited at Ig-1. However, the flame maintains the convex shape with the cellular structure on the flame surface as the flame is ignited at Ig-2. The cellular structure results from Darrieus-Landau instability, but the Darrieus-Landau instability cannot invert the convex flame front. The flame tip and pressure dynamics have been examined. When the flame is ignited at Ig-1, the flame oscillates violently, and the overpressure profiles oscillate as a Helmholtz-type. When the flame is ignited at Ig-2, the left flame front propagates in an atmospheric pressure with a nearly constant speed. The prominent flame acceleration and oscillation are not observed at Ig-2 because of lacking flame acoustic interaction. What's more, the characteristic time of flame propagation has been compared. The time tw is shorter while the time tp is longer than the calculated value, and the time te has been delayed by both open ends. The flame propagation process is moderated as the flame propagates in the duct with both ends open.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.