Abstract

This paper designed cement-stabilized permeable road subgrade materials. Construction demolition waste with recycled aggregate replaced natural aggregate in cement-stabilized materials to utilize recycled resources for construction solid waste. This paper tests the compressive strength, water permeability, bending strength, and compressive resilience modulus of cement-stabilized permeable recycled aggregate materials under different cementitious additive ratios. The results show that at a recycled aggregate proportion of 30% in cement-stabilized permeable recycled aggregate material, the 7-d unconfined compressive strength exceeds 3.5 MPa, and the permeability coefficient surpasses 3.5 mm/s, which can meet the roadbed requirements in China. The incorporation of recycled aggregates significantly reduces the mechanical properties and water permeability of cement-stabilized permeable recycled aggregate materials, while cementitious additives improve the mechanical properties. Specifically, red brick, old concrete, and ceramics in recycled aggregates weaken the mechanical properties of the skeleton structure of cement-stabilized permeable recycled aggregate materials, and the compressive strength, bending strength, and compressive resilience modulus decrease with the recycled aggregate content. Cementitious additives can fill the micro-pores of the interface transition zone of cement-stabilized permeable recycled aggregate materials to improve the cementation strength between aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call