Abstract
In order to improve the mechanical properties and deformation characteristics of permeable concrete, glass fiber was added to this type of concrete. Based on an unconfined compressive strength test, non-contact full-field strain measurement system, and scanning electron microscopy test, the effects of aggregate particle composition, shaking time, fly ash content, fiber length, and fiber content on the strength and permeability of permeable concrete were studied. The results show that the strength and water permeability of permeable concrete are negatively correlated with an increase in shaking time. When the aggregate particle size is 5-10 mm, the permeable concrete has both good strength and permeability. Proper incorporation of fly ash improves the compactness inside the structure. The influence of different lengths of glass fiber on the strength of permeable concrete first increases and then decreases, and the permeable property decreases. With the same fiber length, the strength increases first and then decreases with an increase in the content, while the porosity and water permeability coefficient decrease. Under the test conditions, when the length of glass fiber is 6 mm, and the dosage is 2 kg/m3, the strength performance of permeable concrete is the best, and the permeability effect is good at the same time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.