Abstract

Thermal barrier coatings (TBCs) are used to thermally insulate superalloy components from the hot gas streams in gas turbine engines. In this work, electrical discharge machining (EDM) was used to machine different inclined holes in TBC-coated nickel superalloys by integrating the inner-jet-liquid rotating electrode method and the assisting electrode method. The influences of the inclination angle (i.e., from 0° to 60°) and EDM parameters (i.e., peak current, pulse duration, duty factor and flushing pressure) on the machining time and electrode wear were investigated. The surface morphologies and elemental distribution were analyzed using a scanning electron microscope and an energy dispersive spectroscope. The results of the analysis showed that the 8YSZ ceramic coating is more prone to brittle fracture and cracking than the IN718 substrate and NiCoAlY bond coating, and pits and cracks become more pronounced as the inclination angle increases. The damage on the trailing edge is primarily caused by the thermal stress fracture, and the damage on the leading edge is mainly caused by thermal erosion. Using high-energy parameters, a delamination with dimensions of 28 μm (W) × 200 μm (L) occurs on the trailing edges of the coating/substrate interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call