Abstract

The development of hybrid technology and the use of zero-carbon fuels are effective means to improve energy efficiency and reduce carbon emissions. In this study, the Miller cycle spark ignition engine was used, and four load control strategies of throttle, ammonia-hydrogen ratio, air–fuel ratio, and variable valve timing were used to conduct experimental research on the ammonia-hydrogen engine. The experimental results show that the throttle strategy provides the widest output range, and the BMEP is raised from a minimum of 1 bar to 7.4 bar. The ammonia-hydrogen mixing ratio strategy is suitable for cold start conditions, fully utilizing the good combustion characteristics of hydrogen, and at the same time reducing the amount of hydrogen used in the heat engine process as much as possible. The air–fuel ratio strategy provides the highest thermal efficiency with a maximum BTE approaching 40%. It satisfies the energy-saving demand under the single-point working condition of the engine in the series mode. The variable valve timing strategy can realize switching between BMEP between 3.5 bar and 6.5 bar, and keep BTE above 33%. The valve timing strategy can not only provide a wider load adjustment range but also maintain high thermal efficiency. Finally, combining the effects of the four control strategies and the typical operating modes of the hybrid system, this study suggests that the throttle strategy is suitable for the feed mode, the VVT strategy is suitable for the parallel mode, the ammonia-hydrogen mixture ratio strategy is suitable for the cold start condition, and the air–fuel ratio control is suitable for the series mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.