Abstract
The evolution of a polygonal helium cylinder impacted by a planar weak shock wave is investigated experimentally. Three different polygonal interface shapes including a square, an equilateral triangle and a diamond are formed by the soap film technique, where thin pins are used as edges to connect the adjacent sides of soap films. Shock tube experiments are conducted to obtain sequences of schlieren images using a high-speed video camera. In each case, the development of the wave system and the evolution of the polygonal helium cylinder subjected to a planar shock wave with a Mach number of \(1.21\pm 0.03\) are obtained in a single test. For comparison, numerical simulations are also performed using the two-dimensional and axisymmetric vectorized adaptive solver (VAS2D). The variations of the interface properties including the displacement, the length and the height of the distorted interfaces in the three cases are given. For the square helium cylinder, two counter-rotating vortices connected by a thin link can be observed. The height of the distorted interface always increases, and its length first decreases and then increases. In the triangle case, an air jet is formed quickly and moves downwards within the volume and eventually encounters the downstream interface, resulting in a bulge on the downstream interface. In the diamond case, the upstream interface quickly forms a re-entrant air jet similar to that in the triangle case, and the downstream interface becomes flat. The circulation in the three cases is calculated numerically, revealing the main driving mechanism of the development of the shocked polygonal interface. This work exhibits the great potential of the experimental method in studying shock–polygonal interface interactions in the case of slow/fast (air/helium) situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.