Abstract

The surface wettability is important in the change in the relative permeability of gas and water. Due to the heterogeneous property of coal, it has a mixed wetting state, which makes it difficult to predict the change in permeability. To investigate the influence of different wettabilities on two-phase flow, a total of three different rank coal samples were collected and were treated with different chemicals. The alteration of the coal’s wettability, characteristics of gas–water flow, and relative permeability of the coal after the chemical treatments were analyzed. The research conclusions suggest that (1) the coal samples treated with SiO2 and H2O2 increased the hydrophilicity of the coal surface, while the coal samples treated with DTAB increased the hydrophobicity of the coal surface. Compared to SiO2, both H2O2 and DTAB can form a uniform wetting surface. (2) The wettability alteration mechanism among the three different chemical reagents is different. (3) All the chemicals can change the gas–water interface. The water migrates more easily through the cleats after H2O2 treatment, while it is more difficult for the water to migrate through cleats after the DTAB treatment. (4) There are two types of flow states of gas and water on different wetting surfaces. A slug flow is formed on a hydrophilic surface, while an annular flow is formed on a hydrophobic surface. (5) The crossover point and the residual water saturation of the relative permeability curves were influenced by the surface wettability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call