Abstract
Free-spanning submarine pipelines are usually affected by vortex-induced vibration (VIV). Such vibration could influence the liquefaction of the supporting soil at both ends of the free spans and could have catastrophic consequences, including the failure of the local seabed and the displacing, sinking, or floating of pipelines. The influence of pipeline vibration on soil liquefaction has not been studied sufficiently. Therefore, we explored the influence of vortex-induced pipeline vibration on the excess pore pressure of silty soil around a pipeline using flume experiments. Our results showed that pipeline vibration could induce the buildup of excess pore-water pressure, even without wave loading. A fully liquefied zone was found close to the pipeline, where excess pore pressure reached the soil liquefaction criterion, which was surrounded by a partially liquefied zone. The extent of liquefaction depended on the vibration conditions and the weight and burial depth of the pipeline. The pipeline vibration amplitude increased after soil liquefaction. Unlike wave-induced liquefaction, pipeline-induced vibration liquefaction occurred at a critical value smaller than the initial mean normal effective stress. Considering the possibility of pipeline-vibration-induced seabed liquefaction, conventional approaches could underestimate the potential risks to pipeline stability and result in unsafe maintenance practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.