Abstract

This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed laminar flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose, respectively, when the inner cylinder rotates at the speed of 0-600rpm. The results of the present study show the effect of the bulk flow Reynolds number Re and Rossby number Ro on the skin friction coefficients. They also point to the existence of a flow instability mechanism. The effect of rotation on the skin friction coefficient depends significantly on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change in skin friction coefficient, which corresponds to a variation of the rotational speed, is large for the laminar flow regime, whereas it becomes smaller as Re increases for transitional flow regime and, then, it gradually approaches to zero for turbulent flow regime. Consequently, the critical bulk flow Reynolds number Rec decreases as the rotational speed increases. The rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call