Abstract

Heat sink can effectively dissipate heat in a range of thermal applications for improved performance and reliability. Thermally conductive polymer composites show great promise in solving the overheating issue in electronic devices. This experimental study investigates the heat dissipation performance of straight and oblique fin heat sinks made of thermally conductive polymer composites under forced convection conditions over 7.45×104⩽Re⩽3.60×105, where Re is the Reynolds number. The heat sinks were 3D printed using Ice9 Flex (carbon filled polymer), copper filled filament (polylactic acid with 80 wt% copper particles) and bronze filled filament (polylactic acid with 80 wt% bronze particles), respectively. Oblique fins were found to effectively reduce the thermal resistance of heat sinks, increase the convective heat transfer and the inner-fin velocity which results in lower pressure drop, in comparison to straight fins. The carbon-filled polymer (Ice9 Flex) heat sink was shown to have much superior heat dissipation capability compared to metal filled filament heat sinks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call