Abstract

A small cutting depth is the key parameter to realize precision in the machining process. The stability of the machining process will directly affect the quality of machining. In this study, dry grinding experiments using an Fe-Cr-Co permanent magnet alloy with small cutting depths (5 μm) were carried out. The relationship between the number of peaks and valleys and the quality control of the grinding force, wheel speed and feed speed were analyzed. The relationship between the peak and valley values of the grinding force signals and the peak and valley values of the grinding surface obtained using a white light interferometer was revealed. The influence of the grinding parameters on the grinding forces was analyzed by processing the grinding force signals with a low-pass filter based on the rotational speed of the grinding wheel. The experimental results indicated that the difference in grinding force between the peak and valley could be reduced by increasing the grinding wheel speed, which was mainly due to a decrease in average grinding force when the maximum undeformed cutting thickness of the single abrasive decreased. The actual height difference between the grinding surface peak and valley could be realized by increasing the grinding wheel speed. The feed speed of the worktable had no effect on the grinding force signal and the peaks and valleys of the surface morphology. Lower surface roughness could be achieved by reducing the feed speed and increasing the grinding wheel speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call