Abstract

Coal seam gas is a critical substance because it can be a source of a large quantity of clean energy as well as a dangerous source of risk. A pressure relief gas drainage is an effective and widely used method for coal seam gas recovery and gas disaster control in coal mines. A series of pressure relief gas drainage experiments were conducted using large-scale coal samples under different unloading stress paths in this study to explore the unloading stress paths. From the experimental results, the dynamic evolutions of gas pressure, coal temperature, and gas production were analyzed. The trends of gas pressure and coal temperature during pressure relief gas drainage were similar: dropping rapidly first and then slowly with time. Correspondingly, gas production was fast in the early stage of pressure relief gas drainage and became stable thereafter. Meanwhile, gas flow characteristics were significantly affected by the unloading stress paths. Gas pressure and coal temperature had the maximum descent by unloading stress in three directions simultaneously, and the unloading stress of the Z direction had the minimal impact when only unloading in one direction of stress. However, the influence of unloading stress paths on gas production was complex and time dependent. The difference coefficient parameter was proposed to characterize the influence degree of unloading stress paths on the pressure relief gas drainage effect. Eventually, the selection of unloading stress path under different situations was discussed based on time, which is expected to provide the basis for pressure relief gas drainage.

Highlights

  • With the rapid industrialization development, the consumption of the fossil fuel that is a nonrenewable resource is increasing day by day

  • Coal temperature, and gas flow rate were monitored during the whole drainage period

  • Gas flow characteristics were significantly affected by unloading stress paths

Read more

Summary

Introduction

With the rapid industrialization development, the consumption of the fossil fuel that is a nonrenewable resource is increasing day by day. Coal seam gas is an accessory product of the coalification process, which mainly produces methane and low concentrations of carbon dioxide, nitrogen, hydrogen sulfide, sulfur dioxide, and heavier hydrocarbons [1,2,3,4,5]. The total world reserves of coal seam gas are estimated to be 262 trillion m3, and it has received increasing interest from many countries including USA, Australia, Canada, and China [6, 7]. Coal seam gas is a double-edged sword, which cannot only be a source of high quality clean energy in large quantities and is a dangerous source of risk in coal mines [8,9,10]. High-efficient gas drainage is very important for the safety production of the coal mine

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.