Abstract
Lithium polymer batteries are an improvement from the existing lithium ion batteries in terms of the risks of electrolyte leakage and explosion. Demand for lithium polymer batteries is rapidly increasing because of their advantages such as stability, light, and higher degree of freedom of shape. Accordingly, the demand for aluminum pouches, which are the exterior material of lithium polymer batteries, is increasing and research and development of aluminum pouches are actively being conducted. In the case of aluminum pouches, the forming area and depth that can accommodate the battery cell are increased according to the capacity of the battery, and stable formability is essential for aluminum pouches. In this study, manufacturing processes were changed to examine ways to improve formability. First, by changing the process order so that the surface treatment coatings on both sides of the aluminum foil were carried out simultaneously, the number of times when there was contact of the nylon film with the work roll was reduced. As a result, formability was improved because damage to the surface of the nylon film was reduced and the slipperiness was maintained. In addition, with regard to the drying temperature of the adhesive that constitutes the innermost layer, as the drying temperature increased (120 °C), solvent volatility increased, leading to stronger adhesion between the interfaces and resulting in improved formability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.