Abstract

The twin variable geometry turbocharger (VGT) System, through efficient use of exhaust energy, maximizes internal combustion engine (ICE) power, reduces exhaust emissions and improves reliability. However, the internal flow characteristics of the twin-VGT system are greatly affected by the environment. To ensure that the two-stage adjustable supercharged internal combustion engine is efficient in all geographical environments and under all operating conditions, it is necessary to conduct in-depth research on the internal flow characteristics of high- and low-pressure turbines. In this paper, an experimental system of the flow characteristics of a double variable-geometry turbocharging (twin-VGT) system is designed and developed. A two-stage variable turbine flow characteristic test was carried out, focusing on the relationship between the initial rotational velocity of high variable-geometry turbocharging (HVGT) and blade opening in low variable-geometry turbocharging (LVGT). The effects of high- and low-pressure variable-geometry turbocharger (VGT) blade opening on available exhaust energy, expansion ratio distribution, blade velocity ratio, compressor power consumption and isentropic efficiency were studied. The results show that when the available energy of exhaust gas is constant, with the increase in HVGT turbine speed, when the LVGT blade opening decreases by 10%, the low-pressure turbine expansion ratio increases by about 0.23.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call