Abstract

The flow and heat transfer characteristics of TiO2-water nanofluids with different nanoparticle mass fractions in a spirally fluted tube and a smooth tube are experimentally investigated at different Reynolds numbers. The effects of pH values and doses of dispersant agent on the stability of TiO2-water nanofluids are discussed. The effects of nanoparticle mass fractions and Reynolds numbers on Nusselt numbers and frictional resistance coefficients in the spirally fluted tube and the smooth tube are also investigated. It is found that TiO2-water nanofluids in the spirally fluted tube have a larger enhancement than that in the smooth tube. The heat transfer enhancement and the increase in frictional resistance coefficients of TiO2-water nanofluids in the spirally fluted tube and the smooth tube for laminar flow and turbulent flow are compared. It is found that there are a larger increase in heat transfer and a smaller increase in frictional resistance coefficients for turbulent flow than that for laminar flow of TiO2-water nanofluids in the spirally fluted tube. The comprehensive evaluations for the thermo-hydraulic performance of TiO2-water nanofluids in the smooth tube and spirally fluted tube are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.