Abstract

Recently, many novel reactor concepts based on membrane fluidized bed reactors have been proposed. In this work, the effects of gas permeation through flat membranes on the hydrodynamics in a pseudo-2D membrane-assisted gas–solid fluidized bed have been investigated experimentally. A combination of the non-invasive techniques (Particle Image Velocimetry (PIV) and Digital Image Analysis (DIA)) was employed to simultaneously investigate solids phase and bubble phase properties in great detail. Counter-intuitively, addition of secondary gas via the membranes, that constituted the confining walls of a gas–solid suspension at conditions close to incipient fluidization, did not result in a larger, but in a smaller equivalent bubble diameter, while gas extraction on the other hand, resulted in a larger equivalent bubble diameter, although in this case the effect was less pronounced. This could be explained by changes in the larger scale particle circulation patterns due to gas extraction and addition via the membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.