Abstract

Abstract Aquifer thermal energy storage is a versatile method for regulating building temperatures, utilizing groundwater as a medium for both summer cooling and winter heating. Water has high thermal conductivity and specific heat but is corrosive, creating a mineral build-up that causes scaling. Additionally, its high freezing point presents operational challenges. Vegetable oils emerge as a promising alternative, owing to their lower freezing points. In light of environmental concerns, researchers are exploring vegetable oils as substitutes for petroleum-derived mineral oils. This paper is intended as an initial study using vegetable oils, i.e. coconut and sunflower oil, as the heat-transfer medium in aquifer thermal energy storage. The experiments assess the heat-transfer coefficient of coconut, sunflower, mineral, and synthetic oils when exposed to the same heat source. The study also evaluates the impact of introducing micro-carbon (graphite and charcoal) to the oils. Results indicate that sunflower oil has the highest heat-transfer coefficient of 374.4 W/m2 K among the oils, making it suitable for aquifer thermal energy storage applications. Furthermore, augmenting sunflower oil with charcoal powder enhances its performance by increasing the heat-transfer coefficient to 474.9 W/m2 K, or a 27% increase. In contrast, coconut oil proves unsuitable for aquifer thermal energy storage deployment because of its low heat-transfer coefficient of 293.7 W/m2 K. The heat-transfer coefficient of synthetic oil increases with graphite powder but decreases with charcoal powder introduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call